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In this paper we find an extremal relation of the theory of approximation of func-
tions on a finite interval by algebraic polynomials. In the Legendre case we find
some estimations and representation in the form of a series of the constant from the
extremal relation.  © 2001 Academic Press

1. INTRODUCTION

In the theory of approximation of functions by polynomials there is a
series of publications which have considered approximation of periodic
functions, represented in the form of convolution, by trigonometric polyno-
mials of order not exceeding n [1, 7-9, 18, 29, 31]. In these publications,
in particular, important extremal relations of the theory of approximation
of periodic functions by trigonometric polynomials can be found (for example,
the least upper bounds of the best approximations by trigonometric polyno-
mials of order not exceeding #n in the metrics of C [1, 8, 9] and L [18] of
certain classes of differentiable functions and the best linear methods for
these classes).

In this paper we have made steps towards constructing an analogous
theory in the case of approximation of functions, defined on a finite interval,
by algebraic polynomials. Making use of the technique of Jacobi polynomials,
we obtain an extremal relation of the theory of approximation of functions
by algebraic polynomials.

We consider the generalized translation operator defined on the space of
functions summable on [ —1, 1] with the weight (1 —x)*(1+x)? (a=f>
— 1) and introduce a generalized convolution corresponding to this operator.
We also introduce some differential operators which in the algebraic case are
some analogues of derivatives; it is worth noticing that the Jacobi polynomials
are eigenfunctions of these differential operators. Furthermore, we consider
some classes of functions, representable in the form of generalized convolution.
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Making use of some relations for these classes which are similar to the duality
relations established in [ 18] for the classes of usual convolutions, defined
on the space of all summable 2z-periodic functions, we obtain for these
classes an extremal relation of the theory of approximation of functions by
algebraic polynomials. It seems worthwhile that this relation holds for the
functional class which is substantially more extensive than the well-known
class W2 (see the definition of this class in Section 9; we are now talking
about the case a = =0).

We note that some statements from this paper were published without
proof in [27].

2. GENERALIZED TRANSLATION OPERATOR.
GENERALIZED CONVOLUTION

Let {J>A) & ={J,} & be the orthonormal system of Jacobi polynomials
on [—1,1] with the weight p(x)= (1 —x)*(1+x)? (¢, f> —1). We
denote by L, , 5 (1 <p <o) the space of functions f, Lebesgue-measurable
on [ —1, 1], such that

lpas={] por 70007 ] <

Ly,p=Lyg Loo=L, L. ,z=C[—1,1]=C ForfelL, zwe denote by
{c;“c ﬁ( e ={cf)} & its Fourier coefficients with respect to the system
AYS |

If « > B> — 3, then there exists V7 e [0, n] an operator f— f,, defined on
L, s, with the following properties:

(1) VfeL
moreover

pap (PE[1,00]) and Vie[0,n] we have f,eL,, 4

Hfth;o(,ﬂ<Hfo;oc,[)’; (1)

(2) VfeL,zand Vie[0, ] we have

el f)=c f)-Telcos )T (1)) 7Y, k+1€eN. (2)

The existence of the operator f'— f, possessing these properties has been
proved in [10]. The integral representation of f, in the ultraspherical case
o= f can be traced back to [12]. In the general Jacobi case, an integral
representation was first given by G. Gasper [ 10, 11] and in a different form
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by T. Koornwinder [16]. The operator f— f, will be called a generalized

translation operator (g.t.o.). It follows from the integral representations for

f, mentioned above that if f is finite on [ —1, 1], then Vxe[ —1, 1] and

Vte [0, ] we have f,(X) = farccos »(€OS 1). The g.t.o. has been considered in

[3, 4, 6, 19-23, 26, 28, 30, 34] in connection with some problems of

approximation of functions on a finite interval by algebraic polynomials.
We introduce for ¢, ge L, 4 the function

(¢ £)(x) =" () glcos 1) plcos ) sin 1. (3)

it is easy to verify that ¢ x ge L, 5. We will call ¢ = g the generalized
convolution (g.c.) of the functions ¢ and g.
We list some properties of the g.c.:

(1) Vo, gelL, s we have

el * g)=cle) el @)(J(1) ™!, k+1eN; (4)

(2) if1<p, g<oo, p~l+qg7'>1, rt=p~'+q ' =1, peL, , 4
g€Ll,, 4 then px geL, , ;and

Hgﬂ*g”r;a,[i’gu(pup;a,ﬂ'Hqu;oc,ﬁ; (5)

(3) if 1<p, g<©, @eLl,,p &g€Lgap p '+q '=1, then
@ * ge C and

sup{ H(p * gHC: ¢6Lp;a,ﬂ7 H(p”p;oc,ﬁ< 1} = Hg”q;a,ﬂ (6)
(here and below we assume that 0! = oo, o0 "1 =0).

Equality (4) follows directly from (2) and (3). Facts analogous to (2)
and (3) in case of the ordinary convolution, defined on the class of all
L-summable 27n-periodic functions, are well known [35, p.71], [17,
pp. 71-727; properties (2) and (3) of the g.c. can be proved in a similar
manner. In case o« = f =0 they have been proved in [ 26]. We note that, as
it follows directly from (4), the operation of taking the g.c. is commutative
and associative.

3. SOME DUALITY RELATIONS FOR CLASSES OF THE G.C.

We formulate the following theorem due to S. M. Nikol’skii [18].
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THEOREM. Let F be a finite-dimensional subspace of L, , 5 (pe[1, o0]),
fe€L,., g The following relation holds

1
min{“f_uup;a,ﬁ’:uEF}:Sup {le(x)f( ) ( )dx UEqucﬂ( )}7
(7)

where p~'+q ' =1, G\ J(F)={v: |00 p<l, vLF} (notation v L F
means that Yhe F we have || p(x) h(x) v(x) dx =0).

Lemma 1. Let us assume that (1) f = ¢ = g, where g is fixed, (2) either
1<q<p<o, gel,zor q=p, g€l 5 (s'=q'—p~'+1), 3)Fis
a finite-dimensional subspace of C, (4)p~ '+ p '=qg '4+4g '=1. Let
E(f, F)y.o 5 be the best approximation of f by elements from F in the
L., g-metric. Then we have

Sup{E(.f’ F)q;a,ﬂ: H(pHp;u,ﬁg 1} :Sup{ Hf.Hp';oc,ﬁ: gpeGq';oc,ﬂ(F)}' (8)

Proof. 1f pelL,
of the gc., we get f€L, , 3L,z if q=p, g€l .z (s7'=¢~
p~1+1), then, by making use of the same property (2) of the g.c., we
obtain feL,, 4 where r-'=p~'+s ' —1=p~l+g ' —p~'+1-1=
g~ ', sothat r=gand feL,, 4.

Obviously, we can assume g to be finite on [ —1,1]. Taking into
consideration (7), the commutative property of the g.c., and the expression

for the norm of a linear functional on L, , 5, we obtain

wp 1<q<p< 0, gel, g, then, due to property (2)
1_

Sup{E(f; F)q;o(,ﬁ: H(p‘lp;a,/t’< 1}
1
=sup fsup {1 P00 ) F06) o he G f) i ol <1 |
= sup {sup {Jl p(x) h(x) dx r @x) g(cos t) p(cost)sin t dt:
- 0
hEGq';zx,ﬂ(F)}: H(pHp;oc,[)’< 1}

= sup {sup {Jl p(x) h(x) dx Jn g.x) @(cost) p(cost)sintdt:

hEGq’;rx,ﬁ(F)}: |‘¢‘|p;rx,ﬁ< 1}
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1

—sup fsup {1 PO I [ e () 912) pl2)

hEGq’;a,ﬂ(F)}: |¢p;a,ﬁ<1}

1

1
—sup fsup {1 91290212 | s 6 () pl)

H(pHp;oc,ﬁS 1} : hEGq’;u,ﬁ(F)}
= Sup{ ”g * h”p’; oc,ﬁ’: h € Gq'; a, ﬂ(F)}
= Sup{ Hf“p’;oc,ﬁ: @E Gq'; oc,ﬂ(F)}'
The lemma is proved.

Let H, be the set of all algebraic polynomials of degree at most n. For
feL,,pz(qe[l,0]) we introduce

En(f)q;ot,ﬂ :mln{ ”f_ Qn Hq;oz,/i’: Qn EHn}'
It follows from Lemma 1 that

(1) the following relation holds:

SUPLE (/) g 2 0] o, g < 1 =SUPLIf s 7 9 € Gy o H) Y5 (9)
(2) ifge[l, 0], g€Lyop f=0*g q '+4q ~'=1, then
SUP{EW(/) g g7 | @10, s <1} =sup{ll Sl c: @ € Gy p(H,) (10)
(3) ifge[l, 0], geLl,,p5 f=¢*g, then

SUP{ | fll g pi 10011 p <1} = 1€l g, - (11)
We need to prove only part(3). If in Lemmal we take p=1 and

F ={0}, then we obtain E(f, 7 ), 0 3= fllsup; Gg.as(F) is the unit
ball in L., , with center O. According to Lemma 1,

SUPUIS g 2 19111 p <1} =sUp{ [ fllc: [@ll g p<1}-

It remains to make use of (6).
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LemMMA 2. Iff=¢x g geLl,,s(1<g< o), n+leN, ¢ '+4q =1,
then

Sup{ HfHC (Pe Gq’;a,[t’(Hn)} :En(g)q;a,/ﬁ" (12)

A statement analogous to Lemma 2 for ordinary convolutions is well
known [18]; see also [17, p.78]. Lemma 2 can be proved in a similar
manner.

COROLLARY 1. Iff=¢*g,g€L,,z(1<qg<o0), n+1eN, then

sup{En(f)q;oc,ﬂ: H(le;a,ﬂ< 1} :En(g)q;oc,ﬂ' (13)

For the proof we compare (10) and (12).

LEMMA 3. Let f=¢xg 1<p, g<oo, p~'4+qg 121, r '=p~ 14
g '—1,pelL gelL n+1eN. Then we have

o, B q; 0, B>

En(f)r;zx,/?SEn((p)p;zx,ﬂ 'En(g)q;oc,/?' (14)

This statement is analogous to the well-known inequality of Sun’ Yun-Shen
[31] (see also [ 33, p.316]) and can be proved in a similar fashion.

4. THE FUNCTIONS &,., 4

Let re N, te(—1,1). We introduce the function
Do ()= () =(—=1) 27" T(r+a+pf+1) T 2(r) T Ha+1)

xr—l(ﬁ+r)f (l—z2)~ ' (142) P (=2 ds

xr (1—u)* (1 +u)?* 1 du.
1

Later in this paper we will prove a theorem on the representation of any
function f from some class essentially in the form of the g.c. of some dif-
ferential operator %, 4(f) and the function @, , 5. Thus, the function
®,., s will play the role of a kernel in this representation. It will be shown
below that ¢i(Z,,,, 4(f)) (k+ 1€ N) are certain multiples of ¢;(f) (k+ 1€ N),
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respectively, and the function @,. , is constructed so that the g.c. of &,.

and @, , 5 coincides essentially with f.

s(f)

Lemma 4. If r>a+1, then ®,€C; if r=oa+1, then ®, €L,z

(I1<g<o);ifr<a+]l, then @, €L, 5 (1 <q<iit=)

We omit the simple proof of this lemma.

DerFINITION.  We say that r, « and ¢ are consistent if either r > o+ 1,

ge[l,w],orr=a+1,ge[l, ), or r<a+l1, ge[l, 2E%).

Lemma 5. Ifk,reN, k=r, then

ck(CDr):(_l)r Cl(ka r, o, ﬂ) Jk(l)s

(15)

where Cy(k,r,o, B)=T(k—r+ 1) [(k+oa+p+1) T Yk+1)I " Yk+a
+p+r+1) (here and below, by C,, with parameters listed inside the

parentheses we mean positive constants depending on these parameters).

Proof. We introduce the following notation:

)v(z)zf1 (1—u)* (1 +u)P* =" du,

Cola, B, 1) = Cy=(— 1) T+ f4r+1) 275 =7 =(p)
x I~ 1) I (B+7),
Koo (1) = K (1) = Cy - T2(r)(1— 1)~ A1),

Since

P,(1)=C; -ft (1=2)7* " (1 +2) P77 Azt —2) " dz,

we conclude that for re(—1, 1) we have
DO(1)=Cy - T(r)(1 =)™~ (1+0)7F=" A1)
=L =)~ (1+0) 7P K (1).
As it follows directly from (16),
K™(1)=0 (m=0,r—2), Kr=Y1)=—I(r) (r=2)
K(l)=—1

(16)

(17)
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We will prove that
Kgm>(—1)=o (m=0,r—1). (19)

For m =0 relation (19) is obvious and so we can assume that | <m<r—1.
We have

Kﬁm)( C FZ Vzn: < >/‘{(z) ( t)r—l)(m—i)
= C2 {/1 (m)
< >( 1—l +t)ﬁ+r 1)(1 1) ((1 t)r—l)(m—i)}

= C2F2(r){/1(l)((1 —0"H™ 4+ i <”:>:il <l; 1>

X ((1 + t)/f’+r—1)(j) ((1 _Z)oc)(i—l—j) ((1 —t)’_l)(”‘_")}

m _1 ]
-t & (15 s

(L4 )=t I (L= )= (1 —z)’—l)”""’},

which implies (19). Making use of (17), integrating r times by parts, taking
into account (18), (19) and the formula

()0 = Ok, vy ) T4 40, ke, (20)

[32, formulas (4.21.7) and (4.3.4)], we obtain
AP @) = CYP(k, r o, B) T (r) {(—1)’ I'(r) Ji(1)

HET0 G [ 0L =1y A dr}.

(21)
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Furthermore,

(== 4]0 =Y

:_Zr: ; (I=0)* (1 +0)frr=He=D.(—1)
T 1R —

1

f[ (r—1—k)(1—1)~"

r

=(1=0*(1+0)f Q,_4(1), (22)
where Q,_; € H,_, (if the upper index in a product [ is smaller than the
lower one, then the product is considered to be equal to 1).

From (21) and (22) it follows that
PP @0) = CYk, 10, B) - (= 1) (1), k= (23)

Integrating r times by parts and taking into account the formula

((1 _x)oc+r (1 +x)ﬁ+r Jiujrr,ﬂ+r)(x))(r)

=(=1)"Cy2(k,r o, p)(1=x)* (1 +x) T2 P(x),  k=r  (24)
[32, formulas (4.10.1) and (4.3.4)], we find that
A IED) = Cr VK, 1o, f) e PAD,), ke (25)

Comparing (23) and (25), we obtain (15). The lemma is proved.
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5. REPRESENTATION OF FUNCTIONS IN THE FORM OF THE G.C.

We denote by AC[a, b] the class of absolutely continuous functions on
[a,b]. For re N we define

Q,.5=2,=[f£F> Vx)Vxe(—1,1),

Y (x) = {((1—96)““(1+x)ﬁ+’f(’)(X))(k), x| <1
0, x| =1

eAC[ -1,1], k=0,r—1].
For f e Q, we introduce

roc/?(fx (fx)
= (1 =)~ (L42) 7 (L= x)"*" (1 +2)7%7 £Ox)) .

It is clear that Z,(f)e L, 4.

LEmMMa 6. If fe€Q,, then for i=1,r the following relation holds

lim [ fO=D(x)(1—x)*+" =1+ 1 (1 4 x)P+Hr=i+1] =, (26)

x— +1

We omit the proof. It is based on Taylor’s formula for f¢ =9 with the
remainder in the form of a definite integral.

LemMA 7. For feQ, we have

(_l)rcl_l(k’r’a!ﬂ)ck(f)’ k>}",

0 0<k<r—1. 27)

CADAf»={

Proof. Taking into account the definition of the class 2, and integrat-
ing r times by parts, we obtain

Wl Z2(f)=( —U'fl (1 =) (L +x) 77 fO(x) JiP(x) dx,  (28)

which implies at once the second line in (27). Assume now that k>r. We
notice now that Q, = L, 4; it can be proved by using Taylor’s formula for

f with the remainder written in the form of a definite integral. Making use
of formulas (20) and (24) and denoting v(x) = (1 —x)**" (1 + x)#*"
x J@*r+0(x), from (28) we obtain
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el Z(f)=(=1)" CT "k, 1,0, )

1
Xj (1 _x)oc+r (1 +x)/1’+r f(r) J(oc+r /)’+r)(x) dX
1

(1 C Pk ) [ o) fO) d
—1

=(—1) C;(k, 1,0, ) lim jl_é SOx) o(x) dx
1+0

s§—0*

=(_1)r C1—1/2(k’ Fy &, ﬂ)

x lim {Z( Y £ 00150,
= [ e dx}

—(—1y CP kB (— 1)

i=1

x lim [fC72(x) 0" ()15 5+ (= 1) Cr (ko B)

s—-0t

x lim fH (1= %)% (1 +x)% Jo(x) f(x) dx
1+

-0t J_

=(=1)"Cyl(kron B) e f)+(=1) Cy Pk, 1, o, B)

s—-0t

X Z (=D! lim [fO72x) v () 11155 5. (29)

Further, it is obvious that
VD) = (1=x)* = (14 )= 0u(x),  1<i<r, (30)

0; (1 <i<r) being polynomials. Taking into account (26) and (30), we
derive

lim [/ 2(x) 0" D(x)]|5°% 5= I1<i<gr. (31)
5—>0*t

The first line in (27) follows directly from (29) and (31). The lemma is
proved.

For feL, s we set S,(f)=27_oci(f)Jr (m+1eN).
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LemMMA 8. Let re N, feQ,. The equality

f=8(N=2(f)* P, (32)

holds almost everywhere on (—1, 1) with respect to Lebesgue measure (in the
sequel we shall use he abbreviation “a.e. on (—1,1)”).

This lemma is an immediate consequence of (4), (15), and (27).

Remark 1. As we have seen, for the proof of (32), and consequently for
all the subsequent considerations, it was crucial that, according to (27), the
Fourier—Jacobi coefficients of Z,(f) turned out to be certain multiples of
the Fourier—Jacobi coefficients of f. It can be proved that in order for a
linear differential operator of order 2r to possess this property it is necessary
and sufficient that the Jacobi polynomials {J*#} & be eigenfunctions of the
operator. On the other hand, it can be proved that such a differential operator
can be represented as a linear combination with constant coefficients of the
operators Z,. Therefore, we have some reason to consider the operators
to be the simplest among all linear differential operators possessing the
above mentioned property and, consequently, our choice of the operators
9, is to some extent justified.

6. THE MAIN THEOREM

Let re N, pe[1, co]. We denote

Qr,p = {f fEQra gr(f)eLp;oc,ﬂ}s
‘Qr,p: {f fe‘Qr,p’ E‘r—1(<@r(J[))p;m,/3< 1}

It is clear that Q, , =Q,. For fe Q,, » we introduce

Vf,r,p: {Qrfl,p(f): Qrfl,p(f,)eHrfla H@r(f)+ Qrfl,p(f)Hp;o(,ﬂSl};

obviously, V., , # . For feL, s,n+1eN we denote R,(f)= f—S,(f).

LEMMA 9. LetreN, pe[l, co]. The set

{gjr(f) + Qr—l,p(f) :fe‘ér,p’ Qr—l,p(f)e Vf,r,p}

is the unit ball in L, , g with center at O.
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Proof. First we note that, due to the definition of V., ,, we have

ng(f)—i_ Qrfl,p(f)Hp;oc,[x‘gl vfeér’p, VQ,,]LP € Vf,r,p' Let QDGLP;%/”’
@l ;0 p<1. We will show that there exist f€€, ,and Q,_, (f)eV,, ,
such that Z,(f)+ Q,_1, ,(f)=¢. We set

S =730 [ == ()™ (1 =)~ d

<" =0 p) R, (i) (33)

We will prove that € Q,. It follows from (33) that Vxe(—1, 1) we have

SO =L pGN 1= [ (=0 pl) Ry (i 0 ds

or

P15 fO) =T 710) [ (x=1) =1 pl) Rl ) dr. (34)

From (34) we obtain by mathematical induction that Yxe(—1,1) and
k=0,r—1 we have

(PN =) SO =T r=k) [ (e= 0y =17 pl1) Ry _i(gi 1)
i (35)

Since R,_;(¢) L H,_4, it follows from (35) that for k=0, — 1 we have

(p(x)(1=x2)" f(x))©, x| <1,

AC[ —1,117.
0, =1, SAC=LL

o=

We have proved that f'e Q,. It follows from (35) that if we take k =r—1
then Vxe(—1, 1) the following equality holds:

(P =) SOV = [ pl0) Res(gi ) .

This in turn implies that a.e. on (—1, 1) we have
(P(xX)(1—=x2)" f7(x)) = p(x) R, (5 x),
Le.

@r(f) =@ _Sr—l(go)
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or

=Z(f)+S, (o). (36)

Si~nce @l ;0 5 <1, it follows from (36) that E, _(Z,(f)),,« <1, so that
feL2, ,; it remains to set Q,  ,(f)=S,_1(¢). The lemma is proved.

r,p>
THEOREM 1. Ifr,n+1eN, n=r—1, and r, a, q are consistent, then

Sup{En(f‘)q;oc,ﬂ (En(@r(f)))l a, B fEQ } E )q;oc,ﬁ (37)
(here and below, the symbol 3 is considered to have the value 0).

Proof. First we notice that, since r, a, ¢ are consistent, it follows from
(32), Lemma 4, and property (2) of the g.c. that Q, =L, , ;. Taking into
account (32), Lemma 9, and (13), we obtain

SUPE(f) gso, gt S € 2.}
=sup{ E,(Z,(f) * @)+ S, _1(/ g p: F€2,}
=SUp{ E,(Z,(f) * ®,))gio s [€ D, }
=SUp{ E,(Z,( )+ Q11 (/) * @) giap [€3,, Or 11 € V1)
:sup{ ((p*@)qaﬁ H(ﬂulaﬂ\l}:En(@r)q;a,ﬁ- (38)
It follows from (38) that
SUP{E,(f)gsa p - (Eu DS N1 p) ™" 1 f€Q,
= SUP{E,(f)ga p - (Er (D N1 p) " 1 fEQD,]
> SUD{E( /) o p? S D} = B B,) (39)

On the other hand, making use of (32) and Lemma 3, we obtain that
Vf e, we have

Eff)gap<ELZSNt:ap  E D)) g0, po (40)
which implies
SUP{EN(Ngia p - (Bl D Nisap) " fEQ,} SELP)gnp- (41)
Comparing (39) and (41), we conclude that
SUD{ En( M) g p - (En LNt p) " fE€Q,} = Ef(®@))gin g (42)

Since the ratio under the sup symbol is homogeneous with respect to f, the
equality (42) implies (37). The theorem is proved.
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7. SOME ESTIMATES FOR E, (®,)

40, B

In connection with Theorem 1 it is timely to discuss the question of the
estimation of the quantities E,(®,),.,, 4. In order to prove the following
statement, we need

Lemma 10. Ifa=pf> -3, 1<p<g<oo, feL,, zand

o0
z n2(1/p—l/q)(a+1)—1En(f)p; wp < 00,

n=1

then fe L, , g and for ne N we have

En(f)q; o, B < C3(P, q, &, ﬂ) {nZ(l/pl/q)(a+ I)En(f)lﬁ o, B

£y e g ) ﬁ}‘ .

v=n+1

A similar statement for the best approximation of 2z-periodic functions
by trigonometric polynomials was proved in [ 15]. For the approximation
of functions, defined on [ —1, 1], by algebraic polynomials, see [ 13, 24]. In
our case the line of reasoning is the same as in [ 13, 15, 24]; for the proof
of Lemma 10 the only specific piece of information we need is that for
a=f>—3, 1<p<g<ow, Q,eH, (n+1eN) one has

H Qn Hq; a, B < C4(pa q, %, ﬁ) n2(1/p71/q)(oc+ b H Qn Hp; oc,/x’;
(see [5]). We leave the details of the proof to the reader.

STATEMENT 1. If2<q<o, neN,n=r—1, r>(14+a)(1—1), then we

q
have the estimate
E(D,) g < Cs(r, g, a, f) - n?1 0 —a7h=2r, (44)

moreover,

1
E ()50 5~ 27 <r>;°‘,w oo) (45)

(o)

(for two sequences {a,} ., {b.} X, of positive numbers we write a, ~ b,

as n — oo if there exist two positive constants Cg and C, such that for n=m
a

we have Cg <3< Cy).
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Proof. To prove (45) we take into account that

0 1/2
En(¢r)2,oc,ﬂ:{ Z C%(ka raaaﬂ)"]k|%j}

k=n+1

and that
Cilk,r, o, f) ~ k= (k- o0), [Jlle ~k*2 0 (k- o0).

In order to prove (44) one can apply Lemma 10 when p =2, 2 <¢ < o0 and
make use of (45). The statement is proved.

8. THE CASE o= =0

In this case we will give additional information about the constant that
appears in the extremal relation (37). We will use the notations

¢r;0,0:¢r;0’ ‘Qr;O,OZQr;Oa
@r;0,0:@r;0’ En(f)p;O,O:En(f)p;O-

We set also

Rn;O(.f)z Z C%O(f) JECO’O)a n—+ l1eN.
k=0

LemMmA 11. Let re N. The following equality holds on [ —1, 1):

@, o(1)=2""T~Xr) (1=t 'In(1—1)+ A4, (1), A, _, eH, _,.
(46)

We omit the simple proof of this lemma.
Let T, (ne N) be the set of all ordered n-tuples with real coordinates.

LEMMA 12. Let re N. We set
er(da Z‘):dar;()(z‘)_ Z dktka
k=0

where d=(dy,..,d,)€T,.1, n+1eN. If n=zr—1, then VdeT,, , the
function Y (d, -) has at most n+ 1 zeros in (—1, 1), multiplicities included.
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Proof. The proof is by contradiction, i.e. we assume that ¥,(d, -) has
at least n+2 zeros in (—1, 1), multiplicities included. Then, by Rolle’s
theorem, Y *1)(d, -) has at least one zero in (—1, 1). On the other hand,
from (46) we have

P, 1) = DL (1) =27 T ) - (n+ 1 —r)l (1— 1) "2+,
The obtained contradiction proves the lemma.

LemMmA 13. Ifn+1,reN, n=r—1, then we have

def

En(¢r;0) 1;0 _Mr n

S (2v+D(m+2)—1—r)!

1 712
=4(”+2)F<’+2>F "L T @rnme2

(47)

Proof. We set t,=cos ;7% (k=1,n+1). Let P} € H, interpolate ®,.,
with the nodes 7, (k=1, n+ 1) We introduce @* =@, ,— Pk. It is clear
that @*(¢,) =0 (k=1, n+ 1); therefore, due to Lemma 12, the function @}
has no zeroes in (—1, 1) other than ¢, (k=1,n+1). Moreover, all these
zeros are simple. We conclude that the function @3*(¢) ¢,(t), where
¢, (1) =sign sin((n + 2) arc cos ¢), retains its sign on (—1, 1). Making use of
theorem of A. A. Markov [2, p. 84], we obtain that P} is the polynomial
from H, of best approximation to @,., in the L-metric; moreover

M,, U B, o(1) bo(1) dt . (48)

Taking into account (48), (46) and the well-known relation

[" o ndi=0  vo,eH, (49)
-1
we deduce that

M, ,=27"T7%r) jl (1= 1) =" In(1 — 1) § (1) dt | (50)

Applying the equality

signsinz=4z"" ) %j_ll)t,

k=0
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we derive that

1
j (1— 1) VIn(1 —1) (1) dt
1
0 1
RPNEES =t (=0 g, (0 dr, (51
— —1
where ¢, () =sin((2v+ 1)(n+2) arc cos ¢). In view of the formula

(1=2)712 9, () =r'22 2RI (o),

we obtain

Lo & =ty in(1 =06, (1) i
1

1
_ 7[1/2.2—1/2J (1 _t2)1/2(1_t)r—11n(1 )JE%<}2+11/)2()"+2)_1(Z) dt.
-1 (52)

Let m=(2v+1)(n +2) — 1. Making use of Rodrigues’ formula for J{/%1/2)(¢)
and integrating m times by parts, after simple transformations we obtain

L= (=1 T(r) 2 /a D(r+ 27 Y m—r)! (m+1)(m+r+1)) "
(53)
Equality (47) follows directly from (50)—(53). The proof is complete.

Remark 2. Equality (49) is closely related to the fact that the Chebyshev
polynomial of the second kind with leading coefficient 1, namely

U, (x)=2""(1—x2)""2sin((n+ 1) arc cos x)

minimizes the integral jl_l |Q,(x)| dx among all polynomials Q, € H, with
leading coefficient 1.

Remark 3. In fact, in Lemma 13 we have proved that for n+ 1, re N,
n>=r—1 the following equality holds:

E,((1—=x)"""In(1 =x))y;0

s D& (v Dn+2)—1—r)
=2 (”+2)F(r)r<’+2>” /EO (1 D)(nt2) +7)
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In particular, if n+ 1€ N, then
E (In(1 —x)), Z (2v+D((2v+1)*(n+2)>=1))7!
for comparison, we quote the following equality [ 33, p. 462]:

E,(In(1—x)).0=(1+0(1))-4n2 Z (2v+1)73 neNn.
v=0
COROLLARY 2. The following equality holds asymptotically as n — oo:

M, ,=4l(r+3) 2T (r)(n+2) 2’2 (2v+1)=—>—1

+ Cro(r, n)(n+2)777% (54)

here,

1
Cio(r,n)<4rl’ <r+2> I=Yr)yn= %3

r+1)? 1 = 1
><<2r+1 il (v+1)'vr(2v+1)3>' (35

1

This statement can be derived easily from (47).

COROLLARY 3. The following estimate holds: if ne N, 1 <q<2,r>1— é,
then

E(@.0)g0< Cua(r, q) 2 =470, (56)
In order to prove this statement we apply Lemma 10 for o ==0, p=1,

1 < g <2 and take into account (54) and (55). Thus, in the case o« = =0 the
estimate (44) holds if 1 <g< oo, r>1 —é.

REMARK 4. The following relation holds: if re N, r =2, then
En(ér;O)C ~ n72r+2.
Proof. Due to (44), it is sufficient to prove that

En(¢r;0)c = Cyp(r) nTrE2 (57)
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In order to prove (57) one can use the following inequality

2n+2

E(f)c=Cis -n'? z C;% O(f)a (58)

k=n+1

where C;;>0 is an absolute constant. Inequality (58) holds if fe C, ne N,
c2°(f)=0 (k+1eN), [25].

COROLLARY 4. If r, n+1eN, n=r—1, then the following sharp
inequality holds on Q, :

En(f)l;Ong,n En(‘@r(f))l,o (59)

Here and in the sequel by the sharpness of an inequality we mean that
the constant factor in the right-hand side cannot be replaced by a smaller
one on the whole class of functions. This corollary follows from Theorem 1
and (47).

Lemma 14, Ifn+1, re N, n=r—1, then the following equality holds:

I'(n—r+2)

EA®y0)z0= (22— 1)~ i,

(60)

Proof. 1t follows from Lemma 5 that

® IPk—r+1)Q2k+1)12
En(dsr;O)Z;O:{ Z (2F2(rk+3(+1) )}

k=n+1

{ oo (k=2 ((k+7r)+ (k—r—i—l))}l/Z
k=n+1 ((k-i-l’).)

_
NG

1o ((k—r))?
_\/E{k_znlﬂ (k+r)((k+r—1))2

= (k—r+1)1)> 72
2 (kr+1><(k+r>!)2}

1 [ee) r—1
- k -1 k+i)~2
LE Gt T e

s} r 1/2
+ Y (k—=r+D7" ] (k—i—i)_z}

k=n+1 i=—r+2
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1 C (k+r)—(k—r+1) r—1 N

— k

f{k 2, ene—n L EED
E (k+r)—(k—r+1) r N 172

P G, kD }
1 ® k+r r

e — vt k)2

ﬁ1/2rl{k_§+1 _r+1171—_!+2( +l)

r o r—1

— i [T (k+i72+ 3 [T (k+i)~2

k=n+1 i=—r+2 k=n+1 i=—r+1
® k—r+1 =1 12
—_— (k+i)_2}
k:%:ﬂ k+r i:HH
©ojer—1 o
{ > B ] Ui
\[\/Qf Jj=n+2 - i=—r+2
[<'s} r r—1
- > [T G+i—=1)~ Z I1
j=n+2 i=—r+2 j=n+1 i=—r+1
[’} k—r+l r—1 1/2
- — (k-+i)—2}
k=§+1 k+}’ i:l—_!+1
1 r—1 )
—_— (n+1+i0)~
AL
—1 r
Py B i
jema2 ST il
[’} k—r+1 r—1 1/2
—_— (k+i)—2} )
k=§+1 k+r i:l—_!+1

Now we will prove that

o & jAr—1

Bmn® v 0 [T (+im1)2
j=n+2 J=r i=—r+2

® k+r—1 =}

— —_ k+i)~2=0.

I | RS )

k=n+1 i=—r+1

(j+0)~?

(61)

(62)
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In fact,
< k+r r
Bn,r)= Y ——— J] (k+i)~?

k=n+1 k+1—r i= —r+42
® k—r+1 "1
Y o——— ] (k+i2
k=n+1 k—"_r i=—r+1

_ i < 1

_k=n+1 (k—r+ 1) TTZL, , (k+0)? (k+7)

1
(k+r)(k—r+1) ;;1_,+2(k+i>2>

-0,

so that equality (62) is proved. Equality (60) follows at once from (61) and
(62). The lemma is proved.

COROLLARY 5. Forn+1,reN, n=r—1 the following sharp inequality
holds on Q,.,:

E(f)20<22r=1)""I(n—r+2) I (n+r+1) EZ{f));0-
(63)

This statement follows directly from Theorem 1 and Lemma 14.
We formulate the next statement without proof.

Remark 5. If n+1, reN, r>1, n=r—1, then the following sharp
inequality holds on £, ,:

r —1
RuoNeszs( 1 040) Bl o
Ar=D\;u20s

Remark 6. The inequality (40) is in fact a version of the Jackson-type
second theorem where in the case of the approximation of 2z-periodic func-
tions by trigonometric polynomials the best approximation of a function is
estimated from above by the best approximation of a derivative of the
function.

We will consider some particular cases of Corollary 4.

(1) Ifn4+1eN, then VfeQ,., we have
En(f)l;O < Ml;n : En(gl(f))l;O'
From the formula (47) it is easy to derive the estimate

2.11

Ml’n<m (n+l€N),
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so that Vn 4+ 1€ N and Vf e Q,., the following Jackson-type second theorem
is valid:

2.11

E, (/)10 <m'En(91(f))1;o

2.11

<m [E,((1 =) f"(3)1;0+ 2E,(Xf"(x)1;0]-

(2) IfneN, then VfeQ, , we have

En(f)l O\MZ n’ n(QZ(f))l;O'
It is easy to derive from (54) and (55) that Vrne N we have
M, ,<201(n+2)"*+2931(n+2)"¢

so that Vne N and VfeQ, , the following version of the Jackson-type
second theorem is valid

E, ()10 <{201(n+2)"*+2931(n+2) " }{E, (1 —x*)* f@(x))1,0
+8E,(x(1=x%) ["(x))1;0+ En((—4+12x%) f7(x))1;0f-

9. ON SOME CLASSES OF FUNCTIONS

For r e N we introduce

Wiy ={f f""PedCl-1,11, [/ o<1},
En( WZ)L:Sup {En(f)l;o: .fe WZ}

V. A. Kofanov [14] has found the exact value of E,(W?%),. It seems
relevant to compare the classes W7 and Q,.,. Obviously, W7 = Q,.,. We
will show now that W7 #Q,.,. In fact, it is easy to verify that the function
fulx)=(1=x*eQ, \W7 if r—1<u<2r—1. As a matter of fact, the
class Q,., contains functions that have stronger singularities at the points
x = +1 than the functions from Wi’. Thus, the functional class on which
the inequality (59) holds is broader than the class W?.
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